
Evolutionary Testing of State-Based Programs

Phil McMinn
∗

and Mike Holcombe
Department of Computer Science,

University of Sheffield,
Regent Court, 211 Portobello Street,

Sheffield, S1 4DP, UK

{p.mcminn,m.holcombe}@dcs.shef.ac.uk

ABSTRACT
The application of Evolutionary Algorithms to structural
test data generation, known as Evolutionary Testing, has to
date largely focused on programs with input-output behav-
ior. However, the existence of state behavior in test objects
presents additional challenges for Evolutionary Testing, not
least because certain test goals may require a search for a
sequence of inputs to the test object. Furthermore, state-
based test objects often make use of internal variables such
as boolean flags, enumerations and counters for managing or
querying their internal state. These types of variables can
lead to a loss of information in computing fitness values,
producing coarse or flat fitness landscapes. This results in
the search receiving less guidance, and the chances of finding
required test data are decreased.
This paper proposes an extended approach based on previ-

ous works. Input sequences are generated, and internal vari-
able problems are addressed through hybridization with an
extended Chaining Approach. The basic idea of the Chain-
ing Approach is to find a sequence of statements, involving
internal variables, which need to be executed prior to the
test goal. By requiring these statements are executed, in-
formation previously unavailable to the search can be made
use of, possibly guiding it into potentially promising and un-
explored areas of the test object’s input domain. A number
of experiments demonstrate the value of the approach.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

Terms: Verification

Keywords: Evolutionary Testing, Chaining Approach, au-
tomated test data generation, state-based programs

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
To date, the generation of test data by means of Evo-

lutionary Algorithms, known as Evolutionary Testing, has
been largely concentrated on the structural testing of indi-
vidual program functions with input-output behavior [12].
Test data is generated for atomic function calls. However,
functions and components at higher system levels can store
internal data, and can exhibit different behaviors depending
on the state of that data. This presents additional challenges
to the Evolutionary Testing method. The first issue is the
generation of input sequences to the test object, simply be-
cause some program structures may require the test object
to be put into some state in order for them to be reachable.
For example, program statements popping a value from a
stack would not normally be feasible until the stack is in
a non-empty state. Furthermore, state-based test objects
often make use of internal variables such as boolean flags,
enumerations and counters for managing or querying their
internal state. These types of variables can lead to a loss
of information in computing the fitness function, produc-
ing coarse or flat fitness landscapes. As a consequence, the
search receives less guidance, and the chances of finding the
required input sequences are decreased.
The approach proposed by this paper extends previous

work of Baresel et al. [3] which allows input sequences to
be generated, and the authors’ own work [14, 15] address-
ing the problem of internal variables through hybridization
with an extended Chaining Approach. The Chaining Ap-
proach was originally developed by Ferguson and Korel [7, 8,
11]. The basic idea of the approach is to identify a sequence
of statements, involving internal variables, which need to
be executed prior to each individual target structure. By
requiring these statements are executed, information previ-
ously unavailable to the search can be made use of, possibly
guiding it into potentially promising and unexplored areas
of the test object’s input domain. In this way, the chances
of finding input sequences to troublesome structural targets
may be improved.

2. EVOLUTIONARY STRUCTURAL
TESTING

Structural testing coverage criteria demand that test data
be found to execute all program structures of a certain type,
for example all statements or all branches. Evolutionary
Algorithms can automate the derivation of test data for this
purpose by searching the input domain of the program in
question.

1013

1

T

2

F 3T

4F

F

5
T

6
T

7
F

Figure 1: An example control flow graph for calcu-
lating approach levels with respect to a target node -
node 5. Critical branches are indicated with dashed
arrows

Real-valued encodings are used, with individuals directly
representing input vectors to a function of the program cur-
rently under test [19]. In more developed approaches [5, 19]
the fitness function is made up of two components. The first
component is the approach level (sometimes referred to in
the literature as the approximation level). The approach
level metric assesses how close an input vector is to reaching
some structural target on the basis of the execution path
it takes through the program’s control structure. Central
to this is the notion of a critical branch (also referred to in
the literature as decisive branch). A critical branch is sim-
ply a program branch which leads to a miss of the current
structural target for which test data is sought. Once such
a branch is taken through the program’s control structure
for some input vector, failure to reach the target has essen-
tially been “decided”. Take the example control flow graph
of Figure 1. Suppose the goal of the search is to find test
data for execution of the program statement corresponding
to node 6. Critical branches include the true branch from
node 1 and the false branch from node 4, because if either
branch is taken, node 6 cannot be reached. For improved
handling of structures nested within loops, some approaches
[5, 17] count branches leading to a miss of the target within a
loop iteration as critical. In the example, therefore, the false
branch from node 5 is also treated as critical with respect
to node 6.
The approach level for an individual (an input vector) is

calculated by subtracting one from the number of critical
branches lying between the node from which the individual
diverged away from the target, and the target itself. For the
execution of node 6, individuals taking the false branch at
node 5 receive an approach level of zero, individuals diverg-
ing away down the true branch at node 4 receive an approach
level of one, and so on. At the point at which control flow
takes a critical branch for an individual, the branch distance
is calculated. The branch distance reflects how close the al-
ternative branch was to being taken, and is computed using
the values of the variables or constants involved in the predi-
cates used in the conditions of the branching statement. For
example if the false branch were taken from node 4, and the
branching condition at this node is (x == y), the branch
distance for taking the alternative true branch is computed
using the formula abs(x - y) (see reference [18] for a full
list of formulas for different condition types). The branch
distance d is normalized using the following function [1]:

normalize(d) = 1− 1.001−d (1)

This value is added to the approach level to make up the
total fitness value:

approach level + normalize(d) (2)

3. GENERATION OF TEST DATA FOR
STATE-BASED TEST OBJECTS

The procedure described in the previous section generates
input vectors for test objects with input-output behavior.
This section describes two methods for generating test data
for state-based test objects. The first generates input se-
quences for test objects with several callable functions, with
the second method extending the first through hybridization
with an extended Chaining Approach, in order to overcome
internal variable problems.

3.1 Method 1 - Sequence Generation
The method described in the last section generates input

vectors for atomic function calls. Test objects with states,
however, may require input sequences to be found so that
structures dependent on the state are reachable. The input
sequence may involve several different functions. For exam-
ple in the case of a stack module, statements removing an
element from the top of a stack in the “pop” function can
not be covered until something has been pushed onto the
stack via the “push” function.
Tonella [16] generates input sequences using Evolution-

ary Algorithms for the structural testing of classes. The
encoding used is relatively complex, incorporating construc-
tor calls for object creation, and method calls to the objects
concerned. The focus of this paper, however, is generation of
test data for programs written in the procedural paradigm.
Baresel et al. [3] generate input sequences for states for sin-
gle function test objects where the encoding used for single
function calls - as described in the last section - repeated
num calls times, in order to represent a sequence of func-
tion calls of length num calls, the value of num calls being
set for each test object by the tester. The individual now has
several possible opportunities to cover the desired structure.
The fitness value of the sequence is simply the value of Equa-
tion 2 for the function call which was closest to executing
the target structure. In other words, the value of Equation
2 is computed for each function call i, i ≤ num calls and
stored in fitnessi, with the smallest value of fitnessi used
as the final fitness value.
Method 1 of this paper extends the work of Baresel et al.

for test objects with multiple functions. As a result, the en-
coding is more complicated, formed from a generic function
call sub-encoding, which represents the possible call to any
of the functions of the test object. This sub-encoding takes
the form of a function identification number, and a universal
parameter vector, which maps in a different way to the call
signatures of the functions in the test object. An example of
its construction can be seen in Figure 2. First, positions are
assigned in the vector which correspond to the arguments
of the first test object function encountered. The parame-
ters i, j and k map to the first three positions, which are
reserved for double, integer and integer types respectively.
The parameters of the remaining functions are then mapped
into this vector where possible. The integer parameter p of
function 2 maps into position 2. The double parameter q

maps into position 1. New positions are assigned for any
parameters that do not map into the current vector. There-
fore, a new position 4 is added to the end of the vector for
the remaining double parameter r of function 2. As can be
seen from the figure, when function signatures vary in terms
of the numbers of variables of each different type there is
some enforced redundancy.

1014

Function signatures:
void function1(double i, int j, int k)

void function2(int p, double q, double r)

Generic encoding for a function call:
Function ID Position 1 Position 2 Position 3 Position 4

double integer integer double
argument (1) argument (1) argument (2) argument (2)

Mapping of encoding to function 1:
1 i j k ignored

Mapping of encoding to function 2:
2 q p ignored r

Figure 2: Generating a generic encoding and mapping the universal parameter set to individual function call
signatures

The sub-encoding is then repeated num calls times for a
sequence of length num calls. In the case where the state-
based test object only has one function, the function iden-
tification is dropped, and the encoding becomes identical to
that of Baresel et al.

3.2 Method 2 - Sequence Generation with an
Extended Chaining Approach

3.2.1 The Problem of Internal Variables
The use of internal variables in the conditions of programs

can result in a degree of “information loss” when computing
the branch distance measure, producing coarse or flat objec-
tive function landscapes for structures within the program.
This in turn results in the search receiving less guidance,
making it difficult for the search to find the required test
data. The degree of difficulty depends on the type of inter-
nal variable and the form of assignments to it that appear
in the program. Some internal variables may only result in
a small amount of information loss, which may not affect
the success of search. However, in extreme cases, such as in
the case of boolean flag variables, almost all useful branch
distance information is lost [2, 4, 6, 9, 10]. This is because
the flag can only have one of two values - true or false, which
in turn means the branch distance will only have one of two
values - one or zero. This results in the formation of two
plateaux in the fitness landscape; the first corresponds to
the “one” distance, or all inputs which do result in coverage
of the target structure, and the second corresponding to the
“zero” distance, corresponding to the desired test data. No
guidance is provided to the search as to how to navigate
from one plane to the other. This is true in the example
of Figure 3. The plateau corresponding to the false value of
the flag can clearly be seen in Figure 4. The flag is only true
when the input value of i is zero. However, because of the
plateau, the search is not provided with any direction as to
how to find this value.
State-based test objects contain internal variables in order

to manage the state, which can cause problems for the search
in a similar way to that described above. This work incorpo-
rates an extended Chaining Approach to help overcome this
problem, as already successfully applied to internal variable
problems for input-output programs [15].

Node
(s) void flag_example(int i)

{

(1) int flag = 0;

(2) if (i == 0)

(3) flag = 1;

(4) if (flag)

(5) // target node

(e) }

Figure 3: Flag example code

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0
 10 5 0-5-10

b
r
a
n
c
h

d
i
s
t
a
n
c
e

i

Figure 4: Node 4 - true branch distance landscape

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0
 10 5 0-5-10

b
r
a
n
c
h

d
i
s
t
a
n
c
e

i

Figure 5: Node 2 - true branch distance landscape

1015

3.2.2 The Chaining Approach
The Chaining Approach was originally developed by Fer-

guson and Korel [7, 8, 11], utilizing a local search method. It
is of interest to this work because it incorporates a “backup”
strategy when the search for test data fails, for example due
to a coarse or flat fitness landscape caused by the use of in-
ternal variables. The basic idea of the Chaining Approach
is to identify a sequence of program nodes, involving inter-
nal variables, which may need to be executed prior to the
target structure. In doing this, further information can be
made available to the fitness function and greater guidance
can be provided to the search. Consider the example of Fig-
ure 3 again. If the search took into account the fact that
node 3 should be executed prior to node 4, in order to set
the flag to the required true value, branch distance informa-
tion based on the true branch predicate at node 2 could be
used. This information is far more conducive to finding the
required test data (Figure 5). This is precisely the strategy
the Chaining Approach employs, using the concept of an
event sequence.
An event sequence is a sequence of events 〈e1, e2, ...ek〉,

where each event is a tuple ei = (ni, Ci), where ni is a
program node and Ci is a set of variables referred to as
a “constraint set”. The constraint set is simply a set of
variables that must not be modified until the next event
in the sequence. Initially, the event sequence consists of the
start node s and the target nodes. For the example of Figure
3 the initial event sequence is:

〈(s, ∅), (5, ∅)〉
The search attempts to find test data for the initial event

sequence, but is likely to fail due to a lack of guidance caused
by the use of the flag variable. When a search fails, the
Chaining Approach identifies the node where the flow of
execution diverges away from the intended path. This node
is called the problem node. Node 4 is identified as a problem
node, because the flow of execution at node 4 can not be
altered so that the false critical branch is avoided, with the
alternative true branch taken instead. Last definition nodes
of variables used at the problem node are then identified.
Definitions of the flag variable prior to node 4 are to be found
at nodes 1 and 3. New event sequences are then generated.
In the example, two newly generated sequences are formed,
corresponding to the two last definitions. The first requires
the execution of node 1 before nodes 4 and 5:

〈(s, ∅), (1, {flag}), (4, ∅), (5, ∅)〉
The second requires the execution of node 3 before nodes 4
and 5:

〈(s, ∅), (3, {flag}), (4, ∅), (5, ∅)〉
The variable flag is inserted into the constraint set of

the events corresponding to nodes 1 and 3, to avoid any re-
definition of the variable before node 4, which would destroy
the effect of the last definition.
The first new event sequence is infeasible, and the search

for test data fails. However, in attempting to find test data
for the second new event sequence, the true branch distance
information at node 2 can be made use of by the search, and
test data is likely to be found.
The Chaining Approach generates more event sequences if

further problem nodes are encountered. Event sequences are
arranged in a tree, with child sequences developed from each

CFG for
function 1

sg

i1

ik

e1

s1

CFG for
function n

en

sn

eg

Figure 6: Global control flow graph

parent sequence containing the problem node. The process
repeats until test data is found or a certain depth in the tree
has been reached, or a number of event sequences have been
considered. More details can be found in references [7, 8,
11].

3.2.3 Description of the State-Based Hybrid Method
The state-based hybrid method (Method 2) supplements

Method 1 with an extended Chaining Approach.
For the purposes of finding last definitions for the chaining

algorithm, a global control flow graph is formed from the
individual control flow graphs of each function in the test
object. A special global “entry” start node sg is created,
with a set of initializing nodes i1...ik, corresponding to the
initialization of any variables global to functions in the test
object. Edges lead from sg through each initializing node,
and from the final initialization node ik to the start node
of the control graph of each individual function of the test
object. Further edges lead from each function’s end node to
every function’s start node.
The original chaining algorithm of Ferguson and Korel

[7] is extended in several ways. The extended algorithm
features an extended event sequence generation algorithm.
This uses the concept of an “influencing set” to identify all
variables that can have an influence on the problem node
via some program path. Event sequences are generated on
the basis of assignments to these variables. The original ap-
proach only considers last definition assignments to variables
involved in conditions at the problem node. Furthermore,
the extended algorithm contains a “return to problem node”
capability. If the problem node is encountered more than
once by the original chaining approach, it declares failure.
The hybrid approach has the option to generate more event
sequences which may aid the test data generation process,
and overcome the problem node. Finally, the extended al-

1016

gorithm can handle conditions using logical AND and OR
connectives, which the original approach could not. Further
details can be found in reference [13].
The encoding of individuals for the evolutionary algorithm

is split into two parts. The initial part, referred to as the
“precall” allows the evolutionary algorithm to freely choose
which functions are to be called, and thus is identical to the
encoding of Method 1. The functions to be called for the
remaining part are determined by the nodes in the event
sequence. The second part of the encoding is referred to as
the “event sequence calls” section, and is reserved for the
function calls that need to be performed in order to execute
each event node (except events corresponding to sg through
to ik, which will always be executed in the first call) in the
event sequence. Since the functions to be called are known,
no function identification number or universal parameter set
is required, and the encoding for each function call is simply
based on the parameters to that function. As an example,
take the following event sequence, for the execution of the
branch (6, 7) for an arbitrary test object with 4 different
functions:

< (sg, ∅), (6, ∅), (7, ∅) >

Suppose nodes 6 and 7 lie in function number 2. The initial
sequence length is set at 4. The encoding therefore stipulates
any function can be called in positions 1-3, whilst function
2 has to be called in position 3:

Call to
function

2

“precall” event
sequence
calls

Call to any
function

1-4

Call to any
function

1-4

Call to any
function

1-4

The length of the precall sequence shrinks as events are
added before the original problem node. Suppose node 6
is a problem node, and node 5 is inserted before it in the
event sequence:

< (sg, ∅), (5, {var}), (6, ∅), (7, ∅) >

Suppose node 5 lies in function 1. The precall shrinks to a
length of 2:

Call to
function

2

“precall” event sequence calls

Call to
function

1

Call to any
function

1-4

Call to any
function

1-4

If more functions are required before the initial problem
node than the number of calls in the precall, the precall
disappears. Suppose the following event sequence is gener-
ated:

< (sg, ∅), (5, {var}), (5, {var}), (5, {var}), (6, ∅), (7, ∅) >

The precall section no longer exists, leaving an encoding
that consists of function calls for the event sequence only:

Call to
function

2

event sequence calls

Call to
function

1

Call to
function

1

Call to
function

1

The length of the precall for an event sequence precall len
is therefore computed using the formula:

precall len = max(0, init seq len − init prob event pos)

If the event sequence is the initial event sequence, the value
of init seq len equals num calls− 1 (i.e. num calls as used
in Method 1 and set by the tester) and init prob event pos
is zero. Otherwise, init seq len is based on the best indi-
vidual for the initial event sequence test data search - being
the call number in the sequence where target is closest to
being executed. init prob event pos is the position of the
event in the current sequence that was the first problem
node identified from the initial event sequence.
Events can also be inserted between the initial problem

node and the event or events corresponding to the target
structure. In this case the precall length remains unchanged,
but the number of function calls required to execute the
event sequence can increase. The functions required to be
executed in the event sequence calls portion of the encoding
are found by using the following simple algorithm, which
takes each pair of adjacent events ei = (ni, Ci) and ei+1 =
(ni+1, Ci+1) in the event sequence. If ni+1 is not reachable
from en via an acyclic path within the same function, the
function parameters are added to the event sequence func-
tion calls portion of the encoding.

The fitness function is identical to that of McMinn et al.
[15], defined for an event sequence E of length l:

lX

i=1

fitness(ei) (3)

where ei is the ith event in the event sequence, and fitness(e)
is calculated for ei = (ni, Ci) as follows:

1. If the event node ni - to be executed after the event
node of ei−1 but before ei+1 - is missed, add the result
of Equation 2 where approach level is the approach
level for node ni, and d is the branch distance of the
alternative branch at which execution diverged away
from ni.

2. For each definition node def(v) executed for each vari-
able v ∈ Ci violating the definition-clear path required
until ei+1, add the normalized branch distance for the
alternative branch at the last branching node that led
to def(v)’s execution.

4. EXPERIMENTAL STUDY
An experimental study was conducted using both meth-

ods described in the previous section. Full branch coverage
was attempted for ten state-based test objects written in
the C language. Details of each test object can be found
in Table 4. “Anomaly Detector” is a small module which
monitors a stream of incoming data. Its purpose is to de-
termine whether incoming data values are inconsistent with
regards to a history of past entered values. “Array Differ-
ence” consists of one function, which takes an array of ten
integers as a parameter. The function returns true if the cur-
rent inputted array contains the same values as for the array
inputted in the last call of the function. “Postcode” checks
whether stream of inputted characters represents a UK post-
code. “Sliding Window” is an implementation of the sliding

1017

Table 1: Test object details

Test Lines Branches Loops Max. Functions
object of nesting (public)

code level

Anomaly 59 14 2 3 3 (3)
Detector
Array 31 12 2 3 1 (1)
Difference
Postcode 170 50 0 10 5 (1)

Sliding 127 24 3 3 10 (4)
Window
Smoke 40 14 0 2 1 (1)
Detector
Sortcode 97 26 0 4 4 (1)

Stack 51 8 0 1 5 (5)

Tel. 80 22 0 4 1 (1)
Number
Vending 112 26 4 4 5 (4)
Machine
Industrial 425 128 0 10 1 (1)
Example

window network protocol. “Smoke Detector” models a small
controller for a smoke detector. “Sortcode” validates a UK
bank sortcode, whilst “Telephone number” validates a tele-
phone number. “Stack” implements a small stack, whilst
the industrial example is a car controller module, kindly
provided by DaimlerChrysler Research and Technology. For
source code listings (excluding the industrial example), see
reference [13].

4.1 Experimental Setup
For the evolutionary searches, 300 individuals were used

per generation. Each generation was split into 6 subpopu-
lations, with competition and migration across subpopula-
tions. Linear ranking was used with a selection pressure of
1.7. Individuals are recombined using discrete recombina-
tion, and mutated using real-valued mutation. For Method
1, searches were terminated after 200 generations.
For Method 2, with chaining capabilities, an evolution-

ary search takes place for each event sequence, resulting in
potentially several searches for each structure. Here, evolu-
tionary searches are terminated after 50 generations of no
improvement in the best fitness value (see reference [15]).
The chaining tree was explored in a breadth-first fashion,
terminating after the consideration of 200 event sequences
if no test data could be found.
Each method was repeated ten times for each test object

and branch. For each method and test object, the coverage
obtained and the “success rate” was measured. The success
rate measures the percentage of repetitions that resulted in
the required test data being found. Coverage measures the
percentage of branches for which at least one of the ten
repetitions of the method was successful.
The value of num calls used in the experiments for each

test object were as follows: Anomaly Detector (45); Array
Difference (2); Postcode (10); Sliding Window (6); Smoke
Detector (10); Sortcode (10); Stack (45); Telephone Number
(15); Vending Machine (5).

Table 2: Method 1 search stagnation

Test Average generation
object of last improvement

Anomaly Detector 1
Array Difference 1
Postcode 45
Sliding Window 1
Smoke Detector 7.3
Sortcode 10.5
Stack 1
Tel. Number 31.4
Vending Machine 3.1
Industrial Example 9.7

4.2 Results
Figure 7 shows success rates and coverage levels for each

method and test object. In all cases Method 2 - with chain-
ing capabilities - achieved the same or higher success rate
and coverage. For Method 1, 100% coverage is only achieved
with one test object - Sliding Window. For the other test ob-
jects, the presence of internal variables inhibited the search.
Method 2, with chaining capabilities, was able to overcome
some of these problems, achieving 100% coverage for seven
of the ten test objects. These results only come with more
effort - Method 2 generally performs a higher number of
test data (fitness) evaluations per branch (Figure 8) in order
to search each event sequences. However, Table 4.1, shows
that unsuccessful searches for Method 1 stagnate early, and
would be unlikely to find required test data even if the termi-
nation criterion were changed so that a comparable number
of evaluations could be performed.
For Method 2, some branches were not covered due to the

fact that the chaining tree became too large for all feasi-
ble event sequences to be explored. The 200 event sequence
limit on chaining tree exploration was reached on 5,10 and 15
occasions for the Postcode, Sortcode and Telephone Num-
ber test objects respectively. For the Smoke Detector test
object, experiments were re-run ten times with a termina-
tion criterion of 100 event sequences for chaining tree ex-
ploration. Test data was generated with a 100% success
rate. The original limit of 200 event sequences was bro-
ken on 12 occasions, reaching a maximum of 622 event se-
quences for one particular branch. Furthermore, since event
sequences can consist of several nodes, the method is partic-
ularly susceptible to evolutionary search problems involving
nested statements or those dependent on composed condi-
tions. These difficulties were originally observed by Baresel
et al. [5]. Once input data is found for one or more of
the conditions required to reach some program node, the
chances of finding input data that also fits subsequent con-
ditions decreases. This is because a solution for these later
conditions must be found without violating any of the ear-
lier conditions, since all the conditions can not be evaluated
at once. As a result, the search performs poorly. For com-
posed conditions, a similar effect occurs due to the use of
the short-circuiting && and || operators. In this way, test
data generation was hindered for the Postcode, Sortcode,
Telephone Number and industrial example, which have high
levels of nesting or many composed conditions. The Post-
code test object in particular has a high number of nested
nodes, and suffered the most problems. Two branches were
found to be infeasible for the industrial example.

1018

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
D

et
ec

to
r

A
rr

ay
 D

iff
er

en
ce

P
os

tc
od

e

S
lid

in
g

W
in

do
w

S
m

ok
e

D
et

ec
to

r

S
or

tc
od

e

S
ta

ck

T
el

ep
ho

ne
 N

o

V
en

di
ng

 M
ac

hi
ne

In
du

st
ria

l E
xa

m
pl

e

Test Objects

C
ov

er
ag

e
/ S

uc
ce

ss
 R

at
e

(%
)

Method 1 -
Coverage

Method 2 -
Coverage

Method 1 -
Success Rate

Method 2 -
Success Rate

Figure 7: Coverage and success rate

1

10

100

1000

10000

100000

1000000

10000000

A
no

m
al

y
D

et
ec

to
r

A
rr

ay
 D

iff
er

en
ce

P
os

tc
od

e

S
lid

in
g

W
in

do
w

S
m

ok
e

D
et

ec
to

r

S
or

tc
od

e

S
ta

ck

T
el

ep
ho

ne
 N

o

V
en

di
ng

 M
ac

hi
ne

In
du

st
ria

l E
xa

m
pl

e

Test Objects

A
ve

ra
ge

 E
va

lu
at

io
ns

Method 1 -
Successful
searches

Method 2 -
Successful
Searches

Method 1 -
Unsuccessful
Searches

Method 2 -
Unsuccessful
Searches

Figure 8: Average number of evaluations

1019

5. CONCLUSIONS AND FUTURE WORK
This paper has investigated the evolutionary testing of

state-based, procedural test objects. A method was pro-
posed for the generation of input sequences, in order to ac-
commodate the coverage state-dependent structures which
can not be covered using traditional techniques tailored for
input-output functions. This was then extended by hy-
bridization with an extended Chaining Approach, in order
to overcome internal variable problems which prevent the
search receiving adequate guidance to the required test data.
Experiments were performed with ten state-based test ob-

jects, including one industrial example. In all experiments
performed, the hybrid method achieved higher coverage lev-
els and success rates. Certain structures still could not be
covered, however. In some cases full exploration of the
chaining tree was not possible. Furthermore, the method
was inhibited by problems resulting from high levels of nest-
ing in programs and short-circuiting in composed conditions.
Future work will look at addressing these problems. The
problem of nesting and composed conditions could be dealt
with through the use of a Testability Transformation [10]. A
possible solution is outlined in reference [13]. The problem
of chaining tree size might be tackled by performing more
rigorous program analysis in order to rule out certain event
sequences which can not lead to the discovery of the required
test data [13].

6. ACKNOWLEDGEMENTS
This work was funded by DaimlerChrylser Research and

Technology. The authors would like to thank DaimlerChrysler
for providing the industrial example used in the experiments.

7. REFERENCES
[1] A. Baresel. Automatisierung von strukturtests mit

evolutionren algorithmen. Diploma Thesis, Humboldt
University, Berlin, Germany, July 2000.

[2] A. Baresel, D. Binkley, M. Harman, and B. Korel.
Evolutionary testing in the presence of loop-assigned
flags: A testability transformation approach. In
Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2004), pages
43–52, Boston, Massachusetts, USA, 2004. ACM.

[3] A. Baresel, H. Pohlheim, and S. Sadeghipour.
Structural and functional sequence test of dynamic
and state-based software with evolutionary algorithms.
In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2003), Lecture
Notes in Computer Science vol. 2724, pages 2428 –
2441, Chicago, USA, 2003. Springer-Verlag.

[4] A. Baresel and H. Sthamer. Evolutionary testing of
flag conditions. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2003), Lecture Notes in Computer Science vol. 2724,
pages 2442 – 2454, Chicago, USA, 2003.
Springer-Verlag.

[5] A. Baresel, H. Sthamer, and M. Schmidt. Fitness
function design to improve evolutionary structural
testing. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2002), pages 1329–1336, New York, USA, 2002.
Morgan Kaufmann.

[6] L. Bottaci. Instrumenting programs with flag variables
for test data search by genetic algorithm. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002), pages 1337
– 1342, New York, USA, 2002. Morgan Kaufmann.

[7] R. Ferguson and B. Korel. The chaining approach for
software test data generation. ACM Transactions on
Software Engineering and Methodology, 5(1):63–86,
1996.

[8] R. Ferguson and B. Korel. Generating test data for
distributed software using the chaining approach.
Information and Software Technology, 38(5):343–353,
1996.

[9] M. Harman, L. Hu, R. Hierons, A. Baresel, and
H. Sthamer. Improving evolutionary testing by flag
removal. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2002), pages 1359–1366, New York, USA, 2002.
Morgan Kaufmann.

[10] M. Harman, L. Hu, R. Hierons, J. Wegener,
H. Sthamer, A. Baresel, and M. Roper. Testability
transformation. IEEE Transactions on Software
Engineering, 30(1):3–16, 2004.

[11] B. Korel. Automated test generation for programs
with procedures. In International Symposium on
Software Testing and Analysis (ISSTA 1996), pages
209–215, San Diego, California, USA, 1996.

[12] P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14(2):105–156, 2004.

[13] P. McMinn. Evolutionary Search for Test Data in the
Presence of State Behaviour. PhD thesis, University of
Sheffield, 2005.

[14] P. McMinn and M. Holcombe. The state problem for
evolutionary testing. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2003), Lecture Notes in Computer Science vol. 2724,
pages 2488–2497, Chicago, USA, 2003.
Springer-Verlag.

[15] P. McMinn and M. Holcombe. Hybridizing
evolutionary testing with the chaining approach. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2004), Lecture
Notes in Computer Science vol. 3103, pages
1363–1374, Seattle, USA, 2004. Springer-Verlag.

[16] P. Tonella. Evolutionary testing of classes. In
Proceedings of the International Symposium on
Software Testing and Analysis, pages 119–128, Boston,
USA, 2004. ACM Press.

[17] N. Tracey. A Search-Based Automated Test-Data
Generation Framework for Safety Critical Software.
PhD thesis, University of York, 2000.

[18] N. Tracey, J. Clark, K. Mander, and J. McDermid. An
automated framework for structural test-data
generation. In Proceedings of the International
Conference on Automated Software Engineering, pages
285–288, Hawaii, USA, 1998. IEEE Computer Society
Press.

[19] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
test environment for automatic structural testing.
Information and Software Technology, 43(14):841–854,
2001.

1020

